A touchscreen is a display that can detect the presence and location of a touch within the display area. The term generally refers to touch or contact to the display of the device by a finger or hand. Touchscreens can also sense other passive objects, such as a stylus. However, if the object sensed is active, as with a light pen, the term touchscreen is generally not applicable. The ability to interact physically with what is shown on a display (a form of "direct manipulation") typically indicates the presence of a touchscreen.
The touchscreen has two main attributes. First, it enables one to interact with what is displayed directly on the screen, where it is displayed, rather than indirectly with a mouse or touchpad. Secondly, it lets one do so without requiring any intermediate device, again, such as a stylus that needs to be held in the hand. Such displays can be attached to computers or, as terminals, to networks. They also play a prominent role in the design of digital appliances such as the personal digital assistan (PDA), satellite navigation devices, mobile phones, and video games.
History
Touchscreens emerged from academic and corporate research labs in the second half of the 1960s. One of the first places where they gained some visibility was in the terminal of a computer-assisted learning terminal that came out in 1972 as part of the PLATO project. They have subsequently become familiar in kiosk systems, such as in retail and tourist settings, on point of sale systems, on ATMs and on PDAs where a stylus is sometimes used to manipulate the GUI and to enter data. The popularity of smart phones, PDAs, portable game consoles and many types of information appliances driving the demand for, and the acceptance of, touchscreens.
The HP-150 from 1983 was probably the world's earliest commercial touchscreen computer. It doesn't actually have a touchscreen in the strict sense, but a 9" Sony CRT surrounded by infrared transmitters and receivers which detect the position of any non-transparent object on the screen. Until the early 1980s, most consumer touchscreens could only sense one point of contact at a time, and few have had the capability to sense how hard one is touching. This is starting to change with the commercialisation of multi-touch technology.
Touchscreens are popular in heavy industry and in other situations, such as museum displays or room automation, where keyboard and mouse systems do not allow a satisfactory, intuitive, rapid, or accurate interaction by the user with the display's content.
Historically, the touchscreen sensor and its accompanying controller-based firmware have been made available by a wide array of after-market system integrators and not by display, chip or motherboard manufacturers. With time, however, display manufacturers and chip manufacturers worldwide have acknowledged the trend toward acceptance of touchscreens as a highly desirable user interface component and have begun to integrate touchscreen functionality into the fundamental design of their products.
觸控面板 研發結構 Advantage - Support Cover lens - Pattern invisible - Gesture recognition - Better optical performance - Finger or conductor I/P - Don’t need Active Force - In Cell and On Cell Typ
In Cell Capacitive Touch Panel Technology Structure
A:Cell + Module Process Color Filter + Touch Sensor in one glass (In Cell TFT-LCD Product)
B:In Cell TFT-LCD Product + Cover lens Paste
On Cell Capacitive Touch Panel Technology Structure
A:Cell + Module Process (Standard TFT-LCD Product)
B:Touch Sensor Process + Cover lens paste (Touch Panel Product)